
PPPAAARRRAAADDDRRROOOIIIDDD

Presented by the

IEEE Robotics Team

University of Wisconsin-Madison

Faculty Advisor Statement

I certify that the engineering design of the robotic vehicle described in this report, Paradroid, has been significant

and equivalent to what might be awarded credit in a senior design course.

Professor Michael Zinn

Department of Mechanical Engineering

Table of Contents

1 Introduction ... 3

2 Innovations ... 3

2.1 Mechanical Innovations ... 3

2.2 Electrical Innovations... 3

2.3 Software Innovations ... 3

3 Design Process .. 4

3.1 Team Structure ... 4

3.2 Team Development .. 4

3.3 Project Planning ... 5

3.4 Development .. 5

4 Mechanical Design ... 6

4.1 Drivetrain ... 6

4.2 Suspension ... 7

4.3 Chassis and Body ... 8

5 Electronics Design .. 8

5.1 Battery Monitoring System and Status Panel ... 9

5.2 Electrical Safety Features ... 9

5.3 Sensors ... 9

5.4 Main Processor ... 10

5.5 Power System ... 10

6 Software Design .. 11

6.1 Structure ... 11

6.2 Graphical User Interface .. 12

6.3 Obstacle & Lane Detection .. 12

6.3.1 Laser Range Finder .. 12

6.3.2 Vision ... 12

6.4 Navigation .. 14

6.4.1 Autonomous Movement .. 14

6.4.2 Lane Following .. 14

7 JAUS Integration .. 14

8 Cost Summary... 14

9 Performance and Conclusion .. 15

1 Introduction

The University of Wisconsin-Madison IEEE Robot Team is pleased to re-introduce Paradroid to the 17
th

 Annual

Intelligent Ground Vehicle Competition. After not qualifying at last year's competition, we have spent an entire

year modifying and improving Paradroid, including rebuilding several systems from the ground up. The goal of this

project is to go beyond the challenge of the competition and design a versatile and adaptable platform that is

useful for other applications as well.

The UW-Madison IEEE Robot Team is a group entirely of undergraduate students studying engineering and

computer science and who are interested in robotics. We meet several times a week outside of class working on

both Paradroid and outreach projects to teach area students about both robotics and engineering. All of our

approximately 25 members are volunteers, and none of us receive course credit for this project.

2 Innovations

This year Paradroid was significantly updated from last year's design to include many new improvements. These

design changes all stemmed from observations of problems with the previous design.

2.1 Mechanical Innovations

The most annoying pitfall of Paradroid's mechanical design was its height. Though it is necessary to elevate the

cameras for a reasonable field of view, this height made transportation difficult. A few groups in the Madison area

requested demonstrations of Paradroid's capabilities but we were unable to fit it in a car or van for transportation.

For this reason, the upper frame and mounting structure was redesigned so it can be quickly and easily lowered to

solve this problem.

Last year, Paradroid had only a partial suspension system that lacked adequate damping. This year we designed and

manufactured our own viscous damper and coil spring suspension system. This gives much smoother operation

overall due to more continuous contact with the ground on rough terrain and less oscillation after impacts.

2.2 Electrical Innovations

Paradroid’s previous electrical systems had a several shortcomings. The main concern was the wireless emergency

stop system, which had relatively limited range and did not operate reliably. The wireless E-stop has been

completely redesigned to feature a more powerful and robust transmitter to increase the overall safety of the robot.

Paradroid also has a new battery monitoring system that allows the remaining battery capacity and run-time to be

determined easily. The previous system did not have a battery monitor, which led to the battery being overly

discharged frequently.

2.3 Software Innovations

Because the codebase from the previous year was discarded, the software team needed to do additional design work

for components based on a new framework. The team spent several weeks studying the framework's design before

formally defining the required components and how they would interact. While the components themselves were

mostly independent of each other, their eventual intended interaction required the team to cooperate closely, and the

actual implementation was done on a collaborative basis. At the same time, the isolation allowed components to be

tested independently of each other, simplifying testing due to reduced potential conflicts. Each developer conducted

some independent research in their chosen area, taking advantage of efforts by third parties to increase their own

understanding and perhaps find new tricks that could be incorporated into their code. Once the various pieces

neared completion, more extensive testing was done in concert to ensure they could cooperate with each other.

3 Design Process

The development process for Paradroid began in early September of 2007. The design process began with a

discussion of the flaws of our performance at last year's competition. We decided that in order to address many of

these shortcomings we should focus on the basics. Additionally, we realized that our robot performed well from a

mechanical and electrical standpoint, but the software was not ready for the competition. We decided to return to

the team-developed software platform used in previous years, which an entirely new group of team members has

now almost entirely rewritten for Paradroid. The team spent an estimated 5000 hours over a period of nine months

redesigning and improving Paradroid.

3.1 Team Structure

The UW-Madison IEEE Robot Team is a student organization comprised entirely of volunteers. The team mainly

consists of undergraduates from various engineering disciplines and the computer science department. The team is

broken up into three sub-teams: mechanical, electrical, and software, as shown in Figure 1. Leaders for each team

were selected based on past involvement and experience level. An all team meeting is held approximately once a

month to better facilitate communication between the sub-teams. Most major design decisions are made by a

consensus of team members. When there were disagreements, all options were further researched and each party

involved presented the advantages and disadvantages of their proposals to their sub-groups. If a consensus still

could not be reached, the decision was put to a vote.

3.2 Team Development

This year the team had only four returning members, which offered an easy opportunity to restructure the team and

adapt a more sustainable strategy. In previous years, active team members have been almost exclusively juniors and

Figure 1: Team Organization

seniors who have already taken several classes in relevant subject areas. A much more active approach to

recruitment was taken this year, largely focusing on attracting freshmen and sophomores who could remain on the

team for three to four years rather than one or two. Within a month we increased our ranks to over 30 new members

and the majority of them have been active on the team the entire year. Most of these new members had little to no

experience with the majority of team tasks, so we focused almost exclusively on hands on training and guided group

projects for the first few months. Now, by the end of the year, we have developed many new "specialists" in topic

areas ranging from drivetrains and suspensions to embedded circuit boards and vision processing.

3.3 Project Planning

The planning process began at the first meeting of the year, where Paradroid's shortcomings and inability to qualify

were discussed, which led into the larger discussion of how we could improve Paradroid overall. Several new

features of Paradroid were discussed and then those agreed upon were ranked according to priority and given a page

on our team wiki, where their progress could be easily recorded. Each feature was broken down into smaller tasks,

which broke the seemingly daunting projects

down into manageable sections that could be

easily accomplished by the new members to the

team. As each of these small tasks was

completed, the group discussed what they liked

and did not like about the project before moving

on to a new project.

Each of these projects was also written down on a

note card, color coded by team, and posted in

either the "not started," "in progress," or

"completed" area of a bulletin board in the team

office. The advantage of the note card task

tracking system was that it allowed the

interdependence of different features and tasks to be easily understood. As the year progressed, optional tasks lower

in priority were whittled down to those that could be completed in the remaining time and added the most value to

the robot. In the end, this tracking system worked quite well for the team because it was always up to date, as

opposed previous efforts to use software programs to track our progress that were much more time intensive.

3.4 Development

The mechanical, electrical, and software sub-teams each utilized their own development processes suited to their

task requirements. The mechanical team, whose work consisted of mostly hardware design, used a stricter phase-

based development process. Conversely, the software team utilized the agile methodologies to allow for easier

adaptation to the changing scope of their projects. The electrical team, whose projects involved both hardware and

software design, used a combination of both development processes.

The mechanical team's development cycle consisted of computer-aided design, prototyping, production, and testing

phases. SolidWorks, a computer aided design program widely used in industry, was used to model each component

Figure 2: Sample Project Planning Board

in the vehicle. By using SolidWorks, many ideas could be visualized very quickly without cost, and components

could be tested for interferences and proper interaction before they were built. From time to time, experts both on

campus and at companies around the world were contacted about how to best solve a specific design issue in the

most efficient and effective way. After designs were completed and tested on a computer, prototypes were often

built for proof-of-concept testing. If the prototypes worked, the designs were finalized and parts were manufactured

in house.

The electrical team followed a similar development process for their hardware design, using computer aided design

and prototyping whenever possible. Custom boards were designed using EAGLE, a computer aided design printed

circuit board layout tool. The embedded boards were prototyped using breadboards before committing the designed

to a printed circuit board.

The software team carried out much of its development using pair programming techniques. This reduced the

amount of debugging needed and resulted in easier to read code. Pairs worked on individual components and unit

tests for the components. When unit tests passed, they moved on to testing their components with other

components. The software team also focused on producing working revisions of software whenever possible. The

use of a modular software framework made this relatively easy, because nonfunctioning components could be kept

in the root of the versioning repository without being included in a build.

4 Mechanical Design

Paradroid was designed to be a rugged, reliable, and safe unmanned vehicle. The main goal of the mechanical

design is to provide a versatile platform that is capable of traversing all obstacles in the competition and that the

software and embedded systems can be easily tested upon and interfaced with. It embraces modular design for

reusability and upgradeability, with several independent compartments that can be accessed simultaneously. Team

members designed and manufactured all of the parts using SolidWorks and the student shop on campus.

4.1 Drivetrain

Paradroid is a differentially steered, four wheel drive robot powered by two 24V DC wheelchair motors rated at

0.9HP continuous duty. These two motors each power two wheels with chains, and allow Paradroid to reach a

maximum speed of 5.7mph, which is limited to 5mph by the

control software. This allows Paradroid to maintain fast, yet

controllable speeds on rough terrain.

The front wheels are 16-inch pneumatic tires and the rear

wheels are 16" custom-built omni-directional wheels. The

combination of pneumatic tires and omni-wheels allows

Paradroid to combine the traction and terrain handling abilities

of a four-wheel drive vehicle with the turning efficiency of a

two-wheel drive vehicle. Each omni-wheel consists of 10

circumferential lateral rollers that allow the wheels to transmit

torque while also rolling side to side, and the large 1.4" to 3"

Figure 3: Omni-directional wheels reduce

lateral friction for more efficient operation.

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

Step Response

Time (sec)

A
m

p
lit

u
d
e

variable diameter of these rollers keeps the overall shape as circular as possible. This wheel configuration greatly

reduces power consumption by reducing turning friction, the main drawback with a typical four wheel drive

differential steering. As shown in Table 1, using two omni-wheels reduces the power consumption in zero-radius

turns by 73 percent, allowing the vehicle to run longer on an equivalent battery.

 Table 1: Comparison of omni and standard wheel power requirements

Wheel Movement Type Torque Power

Omni-Wheel Zero Radius Turn 38 N-m 480 W

Standard Wheel Zero Radius Turn 143 N-m 1810 W

4.2 Suspension

To reduce undesirable oscillation this year, Paradroid's suspension was entirely redesigned and rebuilt. The original

suspension consisted of rod cylinder assembly with two nested springs. One spring was longer with a low spring

constant; the second was a shorter spring with a higher spring constant to add additional response when the cylinders

approached their maximum extension. This original system had poor response and return when acted upon by force

inputs. The poor response resulted in some oscillation, affecting the camera input during operation.

Through dynamic system analysis, theoretical models of a new suspension were made. One model ignored the

spring constant of the wheel, as would be found in Paradroid's Omni-Wheels, while another took into account the

natural springiness of the pneumatic tire. Both models also contained the theoretical spring and damping effects we

would be adding to the suspension. Compression tests were done on the springs and plotted using Excel to find the

spring coefficient that will be acting in the suspension. Using the quarter car model, spring coefficients, and the

equations determined from the system analysis, MatLab was used to run a simulation with force impulse and step

inputs. Figure 4, below, shows an example response for one such model. From

these models, we were able to estimate the amount of damping necessary to

achieve a smoother, quicker response than the original suspension.

SolidWorks designs were made for the new suspension,

incorporating seals to allow the cylinder to be filled with

Figure 5: Schematic of the new suspension

element, including a spring and damper system

Figure 4: MatLab computer model of

suspension response to a step input.

fluid. A nested spring system incorporates multiple levels of spring coefficients, and the cylinder is filled with oil

for damping. Inside the cylinder is a moving, piston-like assembly with small holes in the face. Fluid moving

through these holes causes viscous damping. An additional spring was added above the piston disk to return the

suspension to an equilibrium position faster. The greatest challenge with this project was sealing the sliding rod

attaching to the frame, as this seal must be precise to prevent leaking and excessive stress on the shaft.

4.3 Chassis and Body

Paradroid's construction consists of modular compartments built around a sturdy steel frame, which provides

strength and durability while also being resilient to impacts and vibrations. Sheet metal covers the outside providing

inexpensive and lightweight protection. The compartmentalized design allows for easy access, removal, and

augmentation of the four main compartments: embedded, processing, battery, and sensors.

The embedded compartment, located in the middle of the deck, houses the motor controller, power supplies and

boards for interfacing with all of the robot's sensors. The processing compartment is located on the rear of the deck.

This compartment has two doors that allow unobstructed

access to the onboard custom-built computer. The open

bottoms of these two compartments allow air to circulate

between them and the battery compartment and make

routing wires and cables much simpler.

The battery compartment is located in the center bottom

of the vehicle to provide a low center of gravity and

balanced wheel traction. A charging port integrated into

the rear of the robot allows the batteries to be easily

charged while inside the vehicle. The sensor module

above the robot houses the stereovision camera, GPS

sensor, digital compass, yaw rate sensor, emergency stop,

and wireless router. The last sensor, a laser range finder,

is attached underneath the front of the robot.

 The riser frame, used to hold the sensor module, was redesigned this year to make transportation easier. The

sensor module stands 4 feet off the ground. A fixed riser frame made it difficult to transport because the robot was

too tall to fit in a van, such as those we take to area schools for demonstrations and to the competition, itself. With

the new collapsible design, the sensor module can now be folded down within minutes so that it sits on the front of

the robot. This new design provides an opportunity for easy future upgrades, such as running the robot in “short”

mode.

5 Electronics Design

Paradroid's electrical systems are designed to provide a simple interface between the main processor and the

mechanical systems, delivering efficiency and expandability without compromising features or safety. The

electrical systems handle all low-level sensor interfacing as well as providing power to all system components. The

Figure 6: Compartmentalized body design allows

simultaneous modification of separate modules and

supports future upgrades.

main processor interfaces with the core of the embedded system, a 32-bit Atmel Linux processor, over a TCP/IP

connection, enabling high-speed data transfer and providing maximum flexibility. The 32-bit Atmel processor

relays commands from the main processor to peripheral boards and provides sensor data and system status updates

to the main processor. The embedded Linux processor has a number of interfaces for maximum flexibility between

different peripheral devices, including I2C, SPI, RS-232, RS-485, and discrete digital I/O.

Motors

Computer

YAW

Rate

Sensor
Encoders

Motor Control
System

Controller

Router

GPS

2 CamerasLRF

Compass

Status Panel

Embedded System

Figure 7: Electrical system diagram

5.1 Battery Monitoring System and Status Panel

Paradroid features a new battery monitoring system that continuously analyzes the vehicle's power usage and can

display current battery capacity and estimate the vehicle's remaining run time. This information is displayed on a

character LCD screen for easy monitoring, along with other important system parameters from the embedded Linux

processor. The status panel also has five green/red light emitting diodes that display the go/no-go status of processes

on the embedded Linux processor.

5.2 Electrical Safety Features

Paradroid has a new wireless emergency stop system with improved range and reliability compared to the old

system. The new remote E-stop has a 1" emergency stop switch and 1000' effective range. The E-stop directly

shuts off power to the motors, bringing the vehicle to a complete stop from full speed in less than two feet of travel.

In the unlikely event of a major electrical failure, electromagnetic parking brakes automatically engage to bring the

vehicle to a halt in less than 1 foot of travel. Paradroid also has a newly designed warning light system that is more

robust than its predecessor was. The warning light system can also operate an optional 110dB air-horn for both

visual and audible warnings. Both the warning light and air-horn are controllable through JAUS commands.

5.3 Sensors

The embedded Linux processor gathers data from the Global Positioning System (GPS) receiver, compass, yaw-rate

sensor, and wheel encoders and then relays that information to the main processor. The main processor then uses a

Kalman filter to determine the robot's position and heading. The yaw rate sensor provides accurate feedback during

turns and corrects for odometry errors and compass lag for accurate heading determination. The GPS receiver is

accurate to within 0.5 meters. Corrections to the GPS position using wheel encoder data and vehicle heading

provide internal position accuracy within 10cm.

Other sensors on the robot include two Unibrain Fire-i Digital Board Cameras and a SICK PLS101-112 laser range

finder that interface directly with the main processor. The cameras provide a color 640x480 VGA picture at up to

30fps over a IEEE1394 (Firewire) interface. The cameras have a field of view of 42.25 degrees, which provides an

effective sensing range of 5 meters using vision data. The laser range finder provides a 180° single-plane sweep of

the area in front of the robot with 0.5° angular and approximately 70 mm radial resolution over an RS-232

connection. The laser range finder is restricted to only sensing obstacles within 8 meters of the robot.

5.4 Main Processor

Paradroid uses a mini-ATX computer as its main processor because it provides much more processing power than an

equivalently priced laptop. This allows Paradroid to quickly analyze sensor data and react to changes in its

environment. Paradroid's typical reaction time is about 200 milliseconds, which corresponds to a vehicle movement

of 17.6 inches at 5 miles per hour. The main processor is a custom-built computer outfitted with a 2.5GHz Intel

Core 2 Quad Processor, 4GB DDR2 RAM and 12GB of solid-state memory. Solid-state memory was chosen for its

increased robustness over conventional hard drives. Additional data can be stored on USB flash drives during

testing. The main computer has a removable 15" LCD monitor and mini-keyboard for adjustment on the fly.

However, a wireless router provides a remote interface to operate the robot, so the detachable display is only used

during testing and debugging.

5.5 Power System

Paradroid's power system is designed to maximize vehicle run time. Power is derived from two 12V deep-cycle

lead acid batteries that form a 24V nominal battery pack with 75AH capacity. This battery system provides power

for up to three hours of operation under normal conditions and up to ten hours in standby mode. The long battery

life and integrated charging port allow Paradroid to run nearly continuously. In addition, depleted batteries can be

replaced in less than one minute to maximize run time. Power conversion using DC-DC converters provides 24V,

12V, and 5V power to the various systems on the robot at 85-90% efficiency. These converters incorporate over

voltage, under voltage, short-circuit, and electrostatic discharge protection, making the power system robust under a

wide variety of conditions. Paradroid also has an optional 40W headlight for operating the vehicle in low-light

conditions.

Table 2: Power System Requirements

 Normal Operating Conditions Worst-Case Conditions

Device Volts Amps Watts Volts Amps Watts

Atmel NGW100 12 0.25 3 12 0.25 3

Linksys WRT54G Router 12 0.4 4.8 12 0.4 4.8

Garmin HVS17 GPS 12 0.1 1.2 12 0.1 1.2

Fire-i Digital Board Cameras (2) 12 0.25 3 12 0.25 3

Compass and Yaw Rate Sensors 5 0.025 0.125 5 0.025 0.125

Sick PLS101 LRF 24 0.8 19.2 24 1 24

Main Processor DC-DC supply 24 3 72 24 4.5 108

Wheelchair Motors (2) 24 10 240 24 120 2880

 Total Amps Total Watts Total Amps Total Watts

 14.825 343.325 126.525 3024.125

6 Software Design

The primary goal of our software is to be a training platform for new and inexperienced team members, while

meeting performance requirements. As such, our general approach was to bring together simple strategies to handle

the various aspects of autonomous navigation, as opposed to creating a complex system that "does it all". With this

in mind, we continued development of the Robotics Simulation and Control Lab (RSCL) framework, originally

designed by the team in 2005. This platform had been abandoned in favor of the CARMEN toolkit from Carnegie

Mellon in 2008, but we decided to revert to RSCL primarily because it was written in Java instead of C++, which

significantly lowered the entry barrier for new students. This year, RSCL was almost completely rewritten to

support remote sensors and effectors, as well as implement greater parallelization and more robust mapping and

localization algorithms. Code was designed from the bottom-up, with focus on testing each input or output

component for performance and reliability before integrating into the overall framework.

6.1 Structure

The software architecture was designed to be

modular and adaptable, allowing

interchanging of components and porting to

new platforms with minimal effort. On the

robot, the software is split into two layers - a

set of platform-specific hardware drivers

running on the embedded system, and the

high-level, platform-independent processing

and decision-making software (RSCL).

Communication between the hardware

controllers and RSCL is done over TCP/IP in

a client-server model. This gives the ability to

running the two halves on completely separate

systems if the need arises.

Components within RSCL are organized into Sources (data providers such as sensors) and Sinks (data consumers

such as motor controllers), so the software can be run with any combination of sensors and/or effectors. Each

component runs independently in a separate thread to take advantage of parallel processing. Since some

components are more important to the vehicle than others are (motor control takes precedence over vision

Figure 8: RSCL Diagram

processing, for example), each thread is assigned a priority level which controls frequency of execution. This

architecture greatly reduces inter-dependencies and allowed us to work on various components in parallel. Our

decision-making algorithms also plug into the framework in the same way and act as the "glue" between the Sources

and Sinks.

6.2 Graphical User Interface

Paradroid's graphical user interface provides an intuitive method of controlling the robot and testing vital systems

remotely. It is designed to be run as a stand-alone package on any computer connected to Paradroid's on-board

wireless network. Any number of users can monitor its systems simultaneously. The GUI displays the status of

vital systems such as the GPS, compass, cameras, LRF, and motor controller. Each major software component can

be started alone or in concert with other systems for increased flexibility during testing. In addition, the GUI

supports a manual control mode in which the speed and direction of the robot can be set by a remote user.

6.3 Obstacle & Lane Detection

Line and obstacle detection is done based on data provided by the laser range finder and the camera. This data is

layer processed onto a global map, which is then used for navigation. Data from each sensor "Source" is run

through a processor before being integrated by the mapping component. During this processing, a confidence rating

is assigned to the output that is then used to resolve conflicting information from two or more sensors.

6.3.1 Laser Range Finder

The simplest and most reliable sensor, the LRF simply provides an array of distances to detected objects in a 180-

degree arc. For our purposes, the range is set to ten meters, although the device is capable of measurements 50

meters away. The data provided is used to identify obstacles by overlaying it with the map generated by the vision

system.

6.3.2 Vision

The team originally started development with an FPGA-based Stereo-On-a-Chip (STOC) camera from Videre

Design, but damage during testing required falling back on dual FireWire cameras from our previous robot,

ReWIRED. We continued using the SVS stereo software bundled with the STOC camera to replicate the depth map

using our standard cameras. While doing the processing on a general-purpose computer CPU is slower, the

processor in Paradroid proved sufficient for the task, and more importantly, the depth map produced was identical to

that produced by the STOC.

Our vision processing relies primarily upon color differences between various objects as well as the ground. During

testing, we found that this approach is sensitive to ambient light and worked poorly in rapidly changing lighting

conditions. To account for this an automatic recalibration algorithm was implemented to compute the new

thresholds used for processing. To determine whether the ground color range needed to be calibrated, sample pixels

are averaged from two locations that were highly unlikely to contain obstacles. If the averages shift significantly

from one frame to the next, recalibration is requested on the next frame, which reduces the risk of calibrating based

on a bad frame. The recalibration process consists of creating a histogram of every pixel in the frame and taking

sample averages from the same two locations. The algorithm then scans outward along the histogram values until it

finds a local minimum to each side, and sets those values as the minimum and maximum values for ground. When

this process is completed for an image, it is handed to other components that run concurrently to handle line and

obstacle detection.

Line detection is performed by taking the converted HSL image and filtering out the ground color range as well as

any physical obstacles such as barrels. Obstacle filtering is based on data from the LRF. The remaining pixels

represent lines or other discolorations on the ground.

Obstacle detection is handled similarly. The code uses an incomplete depth map calculated from images taken from

each camera and filters out any data from the image that is mapped to the expected ground values. To fill in depth

data from areas where there is not enough texture to compute a reliable value, the algorithm looks at the HSL image

for areas different from the expected ground color range. It also removes pixels from the image where it determines

there is an obstacle, to avoid processing the same object twice.

Figure 10: Depth Map Line Detection Figure 9: Coordinates Given by Algorithm

Figure 12: Obstacle Detection Sample Figure 11: Depth Map for Obstacle

6.4 Navigation

6.4.1 Autonomous Movement

The mapping component in RSCL creates a map of obstacles, which is used by the path planner to determine the

best course for the robot. All obstacles are stored with global coordinates, which are determined based on the

robot's position at the time of obstacle detection. We have developed two user-selectable storage formats for the

obstacle map. The first is an occupancy grid, and the second is a priority queue of obstacles, sorted by distance

away from the robot. The first method is simpler and offers better performance and accuracy, but does not scale

well in sparse environments. The second method uses storage space much more efficiently, but accesses are slower.

Between the two, RSCL is able to operate in a wider range of conditions than if it were tied to a single

representation.

Navigation is performed using a series of goals - a fixed point ahead of the robot for the Autonomous Challenge and

waypoints in the Navigation Challenge. Since all navigation and obstacle avoidance by the robot is done via global

coordinates, it is critical that the exact position of the robot be known at all times, and that the values do not drift

over time. Unfortunately a high-precision differential correction subscription for the GPS is beyond our budget, so

we implemented localization using wheel encoder and inertial measurement unit (IMU) data to improve precision.

The GPS, in turn, corrects the drift and jitter present in the other sensors.

6.4.2 Lane Following

Lane following is simply accomplished by marking the lane boundary lines as another type of obstacle, and using

the obstacle-avoidance algorithm to remain within the lane. In the case of dashed lines, the vision processor

interpolates existing lines to fill in the gaps. As a secondary measure, in the Autonomous Challenge, the LRF is

used to detect possible gaps in the lines by flagging any area free of obstacles for 10m as potentially unsafe.

7 JAUS Integration

Given that RSCL is a much simpler architecture than specified by JAUS, we decided to create an abstraction layer

between RSCL and JAUS. All communication within RSCL still uses our custom protocols, as these are much more

efficient given the limited code space and execution speed on some of our embedded system components. Instead,

we represent most of RSCL as components and group them into the appropriate nodes. The appropriate IDs were

also assigned so that commands targeted at specific JAUS nodes or components are passed on to the correct RSCL

system. Since RSCL did not possess an existing remote command and control protocol, we adopted JAUS for all

information transfer between the robot and a remote interface.

We based our JAUS implementation off the OpenJAUS project. Development of their Java implementation has

unfortunately been discontinued and the latest version of JAUS supported was 3.2. We worked around this by

extending the code to support version 3.3 as well as future implementations.

8 Cost Summary

Ideally, the team would design and manufacture all components on the robot for the experience it would provide.

However, several components are too expensive to make in small quantities, require access to specialized

equipment, or are simply beyond the level of undergraduate work. These components, such as motherboards,

motors, the GPS, and others, were purchased, saving us both time and money. The vast majority of the components

on Paradroid were designed and manufactured by the team, including the suspension, frame, power supplies, and

battery monitor. The vast majority of the software is written entirely by team members. In many cases, code

originates from various open source projects and is updated or improved upon. After the competition, these

improvements will be returned to their respective projects so that others may benefit from our improvements as well.

Table 3: Estimated part costs for the project, including those purchased prior to this academic year.

System Item Qty Cost Our Cost

Mechanical 1008 Low Carbon Steel / 6061 Aluminum 1 $550 $300

Misc Hardware 1 $200 $200

UHMW Polyethylene (6 ft) - $98 $98

Pneumatic Tires / Bearings 4 $105 $105

Wheelchair Motors 2 $210 $210

#35 Roller Chain / Sprockets 4 $92 $92

Computer Main Board - Foxconn G33M-S MicroATX 1 $95 $95

Processor - Intel Q9300 Quad Core 1 $280 $280

Memory - 4GB DDR2 800 1 $61 $61

Vehicle
Control

System Controller - Atmel NGW100 1 $89 $89

Interface Board – PCB & Parts 1 $50 $50

Motor Controller - Roboteq AX3500 1 $395 $395

Wireless Router - Linksys WRT54G 1 $50 $0

Wire and Interface Hardware - $100 $45

Sensors Fire-i Digital Board Cameras 2 $222 $0

Quadrature Shaft Encoders - HEDS-5600 2 $120 $0

GPS - Garmin 17HVS 1 $112 $0

Yaw Rate Sensor - MLX90609 1 $60 $0

Power Embedded Power Supply – PCB & Parts 1 $30 $20

ATX Power Supply - M4-ATX 250W 1 $100 $100

Batteries – 75Ah 12V Deep Cycle Lead-Acid 2 $120 $120

Battery Monitor/Status Panel 1 $80 $80

Total $3,341 $2,340

9 Performance and Conclusion

The relatively high top speed and improved

independent suspension system allow

Paradroid to move fluidly over a variety of

terrain at any speed up to 5mph. The

combination of high-power motors and 4-

wheel drive allows Paradroid to climb slopes

and curbs with ease, while the omni-

directional wheels make it easy and efficient to maneuver. Paradroid quickly reacts to obstacles due to the powerful

on-board computer and optimized localization and path planning algorithms. The large lead-acid batteries provide

ample life for testing and can last all day under intermittent use.

Paradroid was originally designed with both military and commercial applications in mind, and with the hope of

advancing the field of unmanned ground vehicles. In that same spirit, Paradroid was redesigned and improved this

year to be a strong competitor in the 2009 Intelligent Ground Vehicle Competition. Paradroid's modularity,

versatility, and efficiency have proven it an ideal platform for autonomous vehicle research.

Performance Parameter Prediction Result

Top Speed 5.0 mph 5.7 mph

Ramp Climbing 15° 21.4°

Curb Climbing 3" 6"

Reaction Time 0.1 sec 0.1 sec

Battery Life 2 hours 3 hours

Detection Distance 15 feet 17 feet

Waypoint Accuracy 0.5m 0.5m

Table 4: Summary of predicted and observed performance.

	Introduction
	Innovations
	Mechanical Innovations
	Electrical Innovations
	Software Innovations

	Design Process
	Team Structure
	Team Development
	Project Planning
	Development

	Mechanical Design
	Drivetrain
	Suspension
	Chassis and Body

	Electronics Design
	Battery Monitoring System and Status Panel
	Electrical Safety Features
	Sensors
	Main Processor
	Power System

	Software Design
	Structure
	Graphical User Interface
	Obstacle & Lane Detection
	Laser Range Finder
	Vision

	Navigation
	Autonomous Movement
	Lane Following

	JAUS Integration
	Cost Summary
	Performance and Conclusion

